Winning and keeping Internet services customers has never been tougher. Service providers face a range of competition in a business that requires rapid response but is still capital intensive. They need partners who are fast enough to get them ahead of their competition and committed to keeping them there, which is why more and more, leading providers depend on Casa Systems.

Casa’s Axyom™ Virtualized Broadband Network Gateway (vBNG) Router provides advanced subscriber management and routing capabilities in a virtualized solution that enables the elastic scaling and service agility today’s dynamic Internet services environment requires. Built from the ground up as a cloud-native solution for both OpenStack and container-based cloud networks, Casa’s Axyom vBNG Router delivers the performance, scaling, and flexibility needed to address the greater diversity of 5G broadband demands. Through a unique design that disaggregates network functions, streamlines packet flows, enables independent and dynamic scaling of control and data planes, the Axyom vBNG delivers superior throughput in both centralized and distributed architectures.

Customers who choose the Axyom vBNG Router can expect full BNG functionality, from a cloud-native virtualized solution.

• IPoE and PPPoE access methods and MPLS as well as direct Ethernet L2 connections for business customers
• Enhanced subscriber and session management and Layer 2 / Layer 3 edge routing for xDSL or PON access technologies
• AAA Radius and Diameter protocols
• Hierarchical QoS for subscriber traffic with traffic shaping and rate limiting for traffic management.
• Routing support for both unicast and multicast with MPLS
• CLI and SNMP management, and Lawful Intercept support

Highlights

Built for the Cloud
The Axyom vBNG was built for the cloud, from the ground up, in Casa’s Axyom microservices based virtualization framework and is deployable in OpenStack-based VM or container-based environments

Independent, Automatic Scaling of Control and Data Planes
The Axyom vBNG Router offers separation of control and data planes and is designed for redundancy and multi-dimensional scaling so service providers have assurance, service agility, and faster time to market

Disaggregation of Network Functions
Not only are control and data planes separated, but the data plane can also be distributed to Casa’s OLT-A, reducing the traffic that has to traverse the vBNG data path, further increasing the Axyom vBNG’s capacity, and giving service providers the ability to flexibly centralize or distribute functions as needed

Industry Leading Throughput
Up to 200Gbps per server, dynamically scalable to terabits per second

Advanced Subscriber Management
Advanced Subscriber Management features including per subscriber QoS and policy-based routing
Axyom Virtual Broadband Network Gateway (vBNG)

The Axyom vBNG Router gives service providers key benefits in the race to attract and retain high speed data customers:

- Network simplification: reduced equipment requirements by replacing multiple legacy Broadband Remote Access Server (BRAS) and BNG chassis with Casa’s vBNG
- Network flexibility: independent, dynamic scaling of control and data planes and, uniquely, the ability to offload the data plane to the OLT-A
- Service agility: increased control over and ability to differentiate the user experience with elastic scaling, per-subscriber QoS, policy-based routing, captive portals, and DHCP relay

Control and Data Plane Separation

The Axyom vBNG software architecture separates control and data plane functions and decomposes those functions, as shown in figure 2 below. This enables not only independent scaling, but also the flexibility to put the control plane and data plane where they make the most sense - on the same server in the data center / CO, different servers, or even in different locations (e.g., the data plane can be distributed closer to the end user). The API between the control and data plane works in any of these scenarios.

Cloud-Native, Decomposed Axyom vBNG Architecture

Control Plane and User Plane Separation

Latency Reduction with Casa’s vBNG and OLT-A

When Casa’s vBNG and OLT-A solutions are used together, they uniquely provide the ability to reduce hops and latency. The initial subscriber authentication traverses the vBNG data plane, but subsequent data packet flows go directly between the OLT-A and spine switch (as shown in the figure below).
This reduces the number of hops for the packets thus reducing latency. The OLT-A can reside in the same Central Office or it can be distributed to a location closer to the subscriber.

Axyom Virtual Management Controller

Like all of Casa's Axyom solutions, the vBNG benefits from the Axyom Virtual Management Controller (VMC) which provides simplified VNF onboarding and life-cycle management, FCAPS-facilitated integration with OSS/BSS systems, northbound interfaces (such as Open Source MANO and ONAP), and granular service assurance. The VMC also provides service assurance enablement, the capacity to process numerous system and application-level KPIs, and auto-scaling of VNFs to meet application level or infrastructure KPI thresholds.
Features

Access Methods
- IPoE / PPPoE sessions
- Direct Ethernet
- MPLS Pseudo-wires

Authentication and Authorization of Subscriber Sessions
- Authentication/Authorization/Accounting via RADIUS and Gx interface
- IPoE/DHCP (Relay and local server)
- IPv4 and IPv6 support
- Walled Garden
- PPPoE Sessions
- RADIUS Change of Authorization (COA)

Traffic Management
- Per subscriber QoS
- Traffic policing/shaping/rate limiting
- H-QoS
- HTTP redirect
- RR and WFQ scheduling
- Unicast Reverse Path Forwarding
- Hybrid Access

L2/L3/MPLS
- 802.ad (QinQ) for 1:1 and N:1 VLAN classifications
- Layer 3 routing/OSPF / BGP / RIP / IS-IS / Policy-based routing
- MPLS (L2 and L3 MPLS VPNs); LAG/LACP
- PIM-SM / IGMP MLDv2

Management
- Element Management function interfaces with OSS/BSS for provisioning, fault and performance management:
 - SNMP, NETCONF/YANG
 - VNFM: Interface to OpenStack
 - Lawful Intercept

Scaling and Throughput
- Independent scaling of control and data planes
- Up to 200 Gbps per 2 RU server, scalable to Tbps